Emerging Technology and Alternatively Powered Aircraft

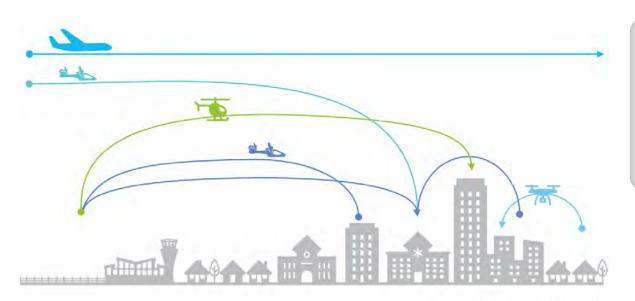
COLORADO AIRPORT OPERATORS ASSOCIATION (CAOA) WINTER CONFERENCE - JANUARY 2023 Mead & lunt

Introductions

David Ulane, Director
 CDOT Division of Aeronautics

Mead

Ryan Hayes, Airport Planner
 Mead & Hunt


Talking Points

- Spring Conference
 Panel Ideas
- Planning and
 Environmental
 Considerations
- → Guidance

Mead

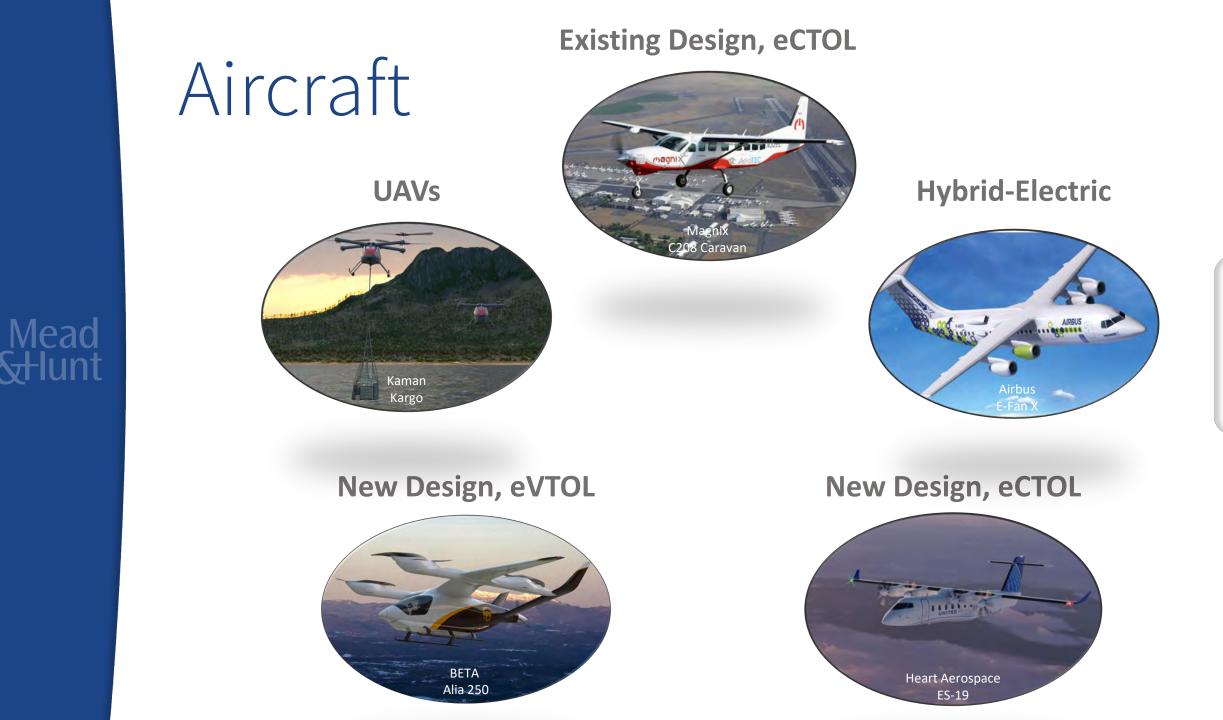
-lunt

- CDOT Aeronautics Division/NREL/NASA
 - CO Alternatively Powered Aircraft

Advanced Air Mobility (AAM) Network, Mead & Hunt, Inc.

Emerging Tech Acronyms

- → AAM Advanced Air Mobility
- → UAM Urban Air Mobility


Mead

- → ADG Aircraft Design Group
- → eCTOL Electric Conventional Takeoff and Landing

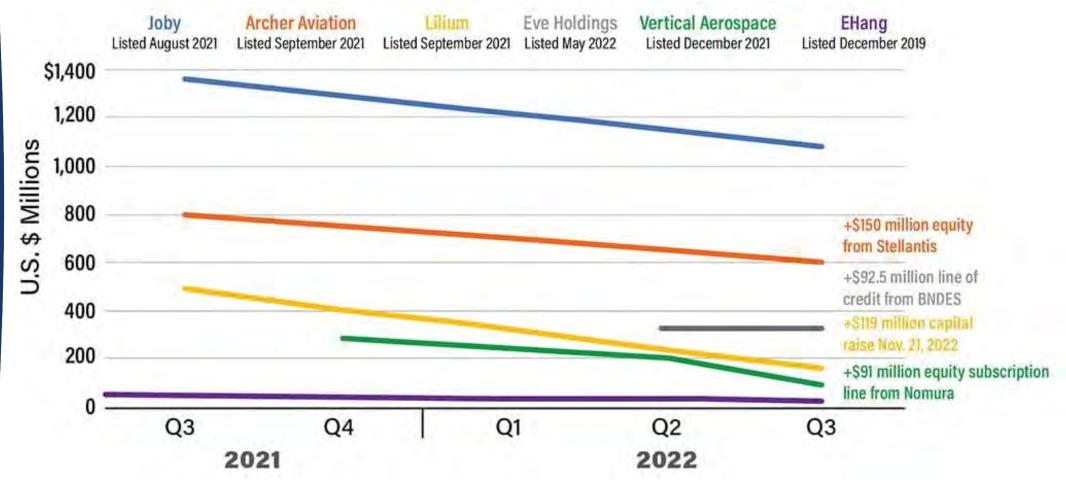
- → eVTOL Electric Vertical Takeoff and Landing
- → RAM Regional Air Mobility
- → UAV Uncrewed Aerial Vehicle
- → OEM Original Equipment Manufacturer

Alternatively Powered Aircraft

Mead & lunt

Air mobility	y startup	market m	ap]
- Drones					
zipline	Skydio	SDS	رل	TroneDeploy	PRECISION
AIROBÓTICS	SKYCATCH	-DHONE BYCING KENDLE	1 avuondua	Makebl ¢ck	Clobotics
AIRMAP	¥	Dedrone	kespry	YUNEEC	SHASPECS
DELAIR			Sad-FEND	@ 1815 ATTOMATION	WINDSOPTED 🔻
ELROY AIR	Flirtey	VAUOL		FLYTREX	Cloudline
- Battery ter	chnology				
northvolt	QuantumScape	microvast	SILA	SVOLT Nº MY ME MR	ØFREYR
Лиотех	EUGAIX	C Livent		ROMEO	
Sion Power	GROUP	MSolid Power	CUBERG		
- Supersonio	c aircraft				
и воом	RAMGEN T		AMPAIRE	explosic	SPIKE
- Air mobilit	y services				
WHEELS UP	VISTAJET	BLADE	VICTOR	A RELIABLE ROBOTICS	HYBRIDAir Vehicles
J JET SUITE	A A P I G	-		PRIVATERLY	000 JEI 321 60
FlightBridge	EVOLUX		FLYT	avinode	FLEXJET

Source: Pitchbook Air Taxi Startup Handbook, 2021


eVTOL Manufacturers

	2023 Rank	2022 Rank	Change	
Joby	1	1	Service entry delayed to 2025. Pilot production begun. Delta Air Lines partnership.	
Archer	2	5	Service entry on track for 2025. Stellantis manufacturing partership, investment.	
Volocopter	3	3	+\$382 million raised. Certification flight tests underway. Service entry slipped to 2024.	
EHang	4	7	Certification expected early in 2023. China market only at first.	
Beta	5	2	+\$375 million raised. Flight test progress. Certification and production plans TBD.	
Eve	6	8	\$377 million special-purpose acquisition company. Engineering support from Embraer. United Airlines investment.	
Lilium	7	4	Shift to premium private market for launch. More funding needed.	
Vertical	8	6	Full-scale tethered hover tests performed. More funding needed.	
Airbus	9	9	Certification in 2025 doubtful. Air medical services initial market focus.	
Wisk	10	10	Unveiled production four-seat autonomous eVTOL. No service entry date announced yet.	
AutoFlight	11	-	Full-scale proof-of-concept flights. European certification with Chinese manufacturing.	
Overair	12	12	+\$145 million from Hanwha (total \$175 million). Plan to fly prototype in 2023.	
Supernal	13	11	Collaborating with BAE Systems, EPS, Honeywell, Microsoft, Urban-Air Port.	

Mead & lunt

Source: Aviation Week and Space Technology

eVTOL Liquidity – Burning Cash

Source: Aviation Week and Space Technology, Company Financials

Mead

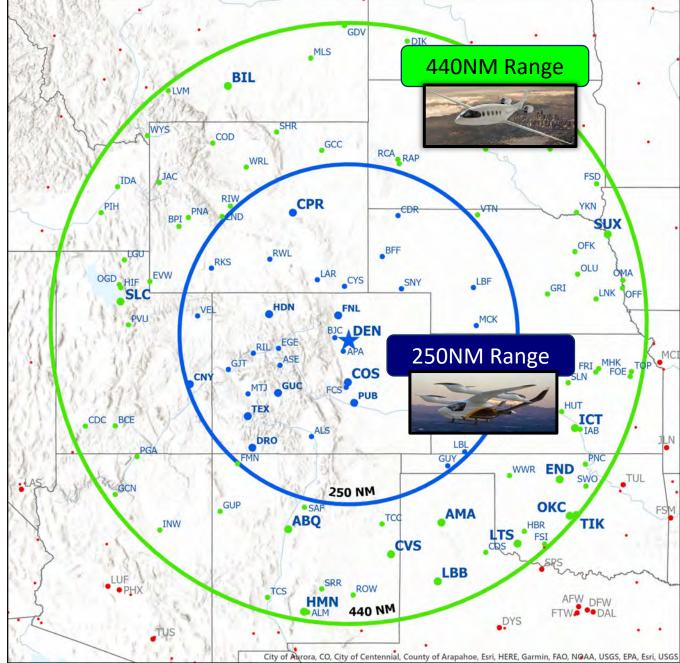
SHunt

Certification Race

- → Short-Term
 - ADG I and II fixed wing and eVTOL
 - General aviation, air taxi, small cargo
- → Medium/Long-Term
 - Designs larger than ADG II
 - Air carrier
 - Hybrid, hydrogen, and sustainable aviation fuels vs. pure electric

Mead &Hunt

Low and Zero-Carbon Energy Sources



	2020	2025	2030	2035	2040	2045	2050
Commuter » 9-19 seats » < 60 minute flights » <1% of industry CO2	SAF	Electric or Hydrogen fuel cell and/or SAF	Electric or Hydrogen fuel cell and/or SAF	Electric or Hydrogen fuel cell and/or SAF	Electric or Hydrogen fuel cell and/or SAF	Electric or Hydrogen fuel cell and/or SAF	Electric or Hydrogen fuel cell and/or SAF
Regional » 50-100 seats » 30-90 minute flights » ~3% of industry CO2	SAF	SAF	Electric or Hydrogen fuel cell and/or SAF	Electric or Hydrogen fuel cell and/or SAF	Electric or Hydrogen fuel cell and/or SAF	Electric or Hydrogen fuel cell and/or SAF	Electric or Hydrogen fuel cell and/or SAF
Short haul » 100-150 seats » 45-120 minute flights » ~24% of industry CO2	SAF	SAF	SAF	SAF potentially some Hydrogen	Hydrogen and/or SAF	Hydrogen and/or SAF	Hydrogen and/or SAF
Medium haul » 100-250 seats » 60-150 minute flights » ~43% of industry CO2	SAF	SAF	SAF	SAF	SAF potentially some Hydrogen	SAF potentially some Hydrogen	SAF potentially some Hydrogen
Long haul » 250+ seats » 150 minute + flights » ~30% of industry CO2	SAF	SAF	SAF	SAF	SAF	SAF	SAF Waypoint 2050

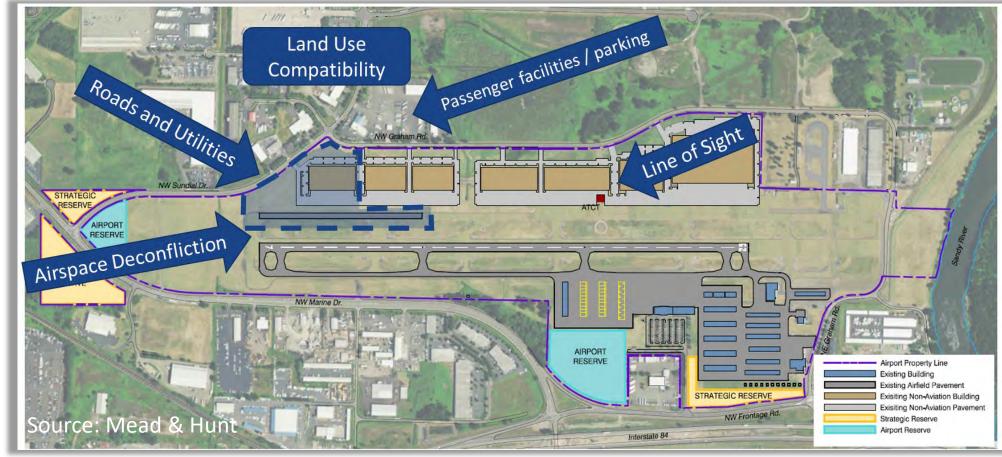
Near-term Capability

Mead &

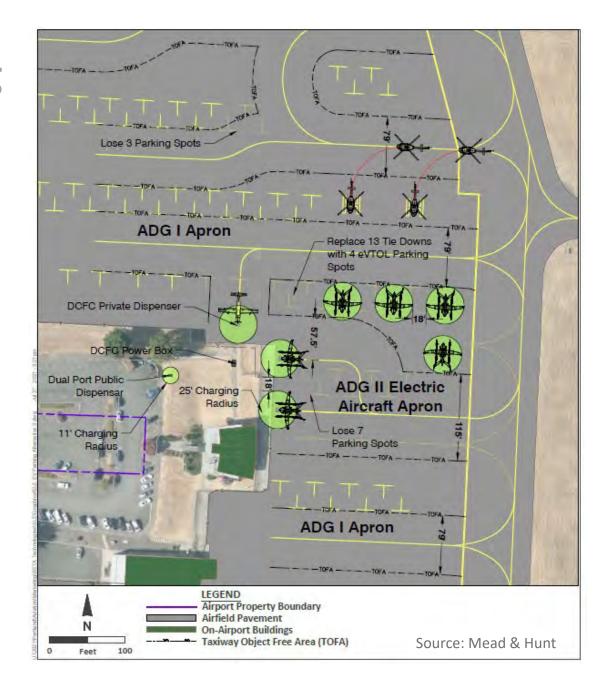
Planning & Environmental Considerations

Terminal Planning Considerations

- → Airside
- → Interior

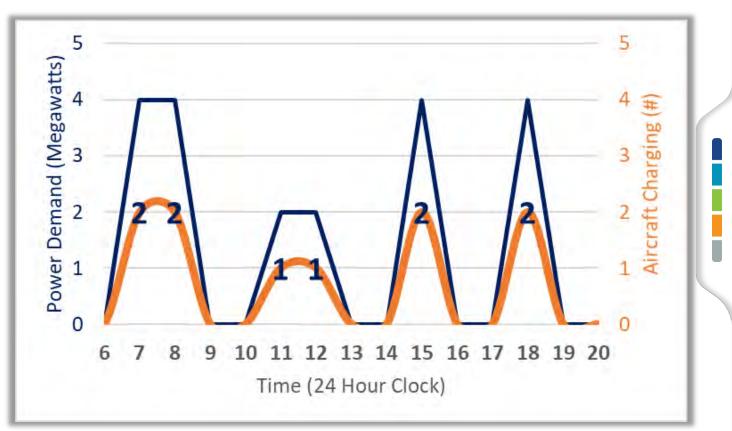

Mead Gilunt

→ Landside


- → Power Supply
 - Simultaneous charging
 - Comprehensive need
- → Airside Planning
 - Aircraft type
 - Airfield compatibility

- → Landside Planning
 - Transit tie-in
 - Auto parking and road network
- → Environmental
 - Noise and overflight
 - NEPA

Mead & lunt


Mead & lunt Landside Planning
 Distance to power

- Setbacks
- Compatibility
- Rotor wash
- Pilot services
- MRO facilities
- Car charging
- Facilities
 Noise/Perception

Electricity Demand

- 1 megawatt = 5 10 acres of panels
- In addition to other demands
 - Buildings
 - Rental Cars
 - Passenger Cars
 - Ground Equipment

Data: National Renewable Energy Labs, 2021 Modeling essential air service demand at Denver International (DEN)

Mead

Guidance Documents Mead & Hunt

FAA Guidance

→ EB No. 105

- Comments submitted 4/18/22
- FAA revised document
- Final published 9/21/22
- → Contents

Mead

- Design and Geometry
- Marking, Lighting, Visual Aids
- Charging Infrastructure
- On-Airport Vertiports
- Safety Elements
- → Key Takeaways
 - Plan like helicopters for now
 - More guidance to come, potentially in May 2023

Federal Aviation Administration

Memorandum

Date:	September 21, 2022
To:	All Airports Regional Division Managers
From:	Michael A.P. Meyers, P.E.
	Manager, Airport Engineering Division, AAS-100
Prepared by:	Robert Bassey, P.E., AAS-110
Subject:	Engineering Brief No. 105, Vertiport Design

ACRP Guidance

ACRP Research Report 236

Airport Cooperative Research Program Sponsored by the Federal Aviation Administration

ACRP Report 236
Electric Aircraft Overview

Mead

Preparing Your Airport for Electric Aircraft and Hydrogen Technologies

- → ACRP Project 11-02/43 Pending
 - Successful Community Inclusion in AAM

EASA European Union Avlation Safety Agency

Other Guidance

- → Agency Guidance
 - European union Aviation Safety Agency (EASA)
 - National Renewable Energy Laboratory (NREL)
- → Private Guidance
 - Lillium

Mead

& lunt

- Vertiports
- Taxiways
- Charging Requirements
- Apron and Terminal

A Roadmap Toward a Sustainable Aviation Ecosystem

Brett Oakleaf, Scott Cary, Darin Meeker, Doug Arent, John Farrell, Marc Day, Robert McCormick, Zia Abdullah, Stanley Young, Jacquelin Cochran, and Chris Gearhart

National Renewable Energy Laboratory

Vertiports

rototype Technical Specifications or the Design of VFR Vertiports for Operation with Manned VTOL-Capable Aircraft ertified in the Enhanced Category

(PTS-VPT-DSN)

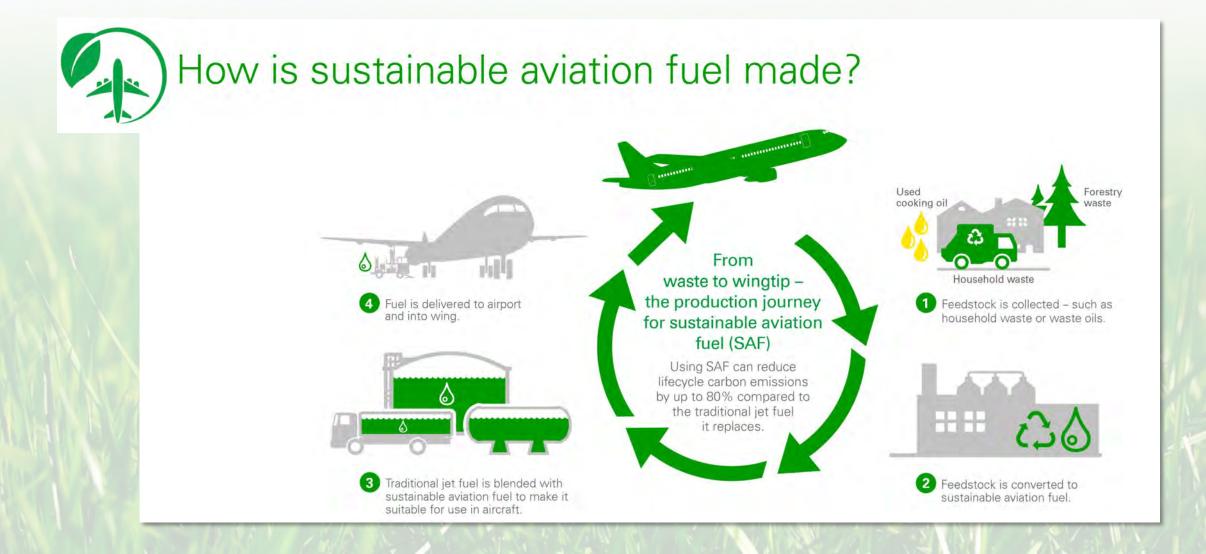
CDOT Division of Aeronautics

COLORADO Department of Transportation Division of Aeronautics

2021 Division Strategic Plan

Battery & Electric Powered Aircraft

Hybrid/Hydrogen Fuel Cell Powered Aircraft



Working Together

Sustainable Aviation Fuel

Mead & lunt

David Ulane | David.Ulane@state.co.us | 303-512-5250 Ryan Hayes | Ryan.Hayes@meadhunt.com | 303.888.1904